1,057 research outputs found

    Production Optimization,Molecular Characterization and Biological Activities of Exopolysaccharides from Xylaria nigripes

    Get PDF
    The optimal culture conditions of exopolysaccharides (EPS) production in submerged culture medium by Xylaria nigripes were determined using orthogonal matrix method. The optimal medium (per liter) EPS was 60.0 g L–1 maltose, 1.0 g L–1 peptone, 5 mmol L–1 KH2PO4, and initial pH 7.0 at 28 oC. In the optimal culture medium, the maximum EPS production was 11.967 g L–1 in shake flask. Two groups of EPSs (designated as Fr-I and Fr-II) were obtained from the culture filtrates by size exclusion chromatography (SEC), and their molecular characteristics were examined by a multiangle laser-light scattering (MALLS) and refractive index (RI) detector system. The weight-average molar masses of Fr-I and Fr-II of EPS were determined to be 6.327104 and 1.478104 g mol–1, respectively. The SEC/MALLS analysis revealed that the molecular formation of Fr-I is of nearly globular shape. Furthermore, the experiments in vitro indicated that X. nigripes EPS exhibited high antioxidative effects though its antitumour activity was limited

    Molecular cytogenetic aberrations in patients with multiple myeloma studied by interphase fluorescence in situ hybridization

    No full text
    Background: Multiple myeloma (MM) is an incurable hematological disorder characterized by the accumulation of malignant plasma cells within the bone marrow (BM). The clinical heterogeneity of MM is dictated by the cytogenetic aberrations present in the clonal plasma cells (PCs). Cytogenetic studies in MM are hampered by the hypoproliferative nature of plasma cells in MM. Therefore, fluorescence in situ hybridization (FISH) analysis combined with magnetic-activated cell sorting (MACS) is an attractive alternative for evaluation of numerical and structural chromosomal changes in MM. Methods: Interphase FISH studies with three different specific probes for the regions containing 13q14.3 (D13S319), 14q32 (IGHC/IGHV) and 1q12(CEP1 ) were performed in 48 MM patients. Interphase FISH studies with LSI IGH/CCND1, LSI IGH/FGFR3, and LSI IGH/MAF probes were used to detect t(11;14)(q13;q32), t(4;14)(p16;q32), and t(14;16)(q32;q23) in patients with 14q32 rearrangement. Results: Molecular cytogenetic aberrations were found in 40 (83.3%) of the 48 MM patients. 13 patients (27.1%) simultaneously had 13q deletion/monosomy 13 [del(13q14)], illegitimate IGH rearrangement and chromosome 1 abnormality. Del(13q14) was detected in 21 cases (43.7%), and illegitimate IGH rearrangements in 29 (60.4%) including 6 with t(11;14) and 5 with t(4;14). None of 9 patients with illegitimate IGH rearrangements and without t(11;14) or t(4;14) we detected had t(14;16) (q32;q23). 24 of the 48 MM patients (50%) had chromosome 1 abnormalities. Among 21 patients with del(13q14), 15 patients had Amp1q12;16 had IgH rearrangements. Whereas, among 27 cases without del(13q14), 8 had Amp1q12; 13 had IgH rearrangements. There was a strong association between del(13q14) and Amp1q12(c2 = 8.26, Ρ€ < 0.01), and between del(13q14) and IgH rearrangement(c2 = 3.88, p < 0.05). Conclusion: 13q deletion/monosomy 13, IGH rearrangement and chromosome 1 abnormality are frequent in MM. They are not randomly distributed, but strongly interconnected. Interphase FISH technique combined with MACS using CD138-specific antibody is a highly sensitive technique at detecting molecular cytogenetic aberrations in MM.ОбоснованиС: мноТСствСнная ΠΌΠΈΠ΅Π»ΠΎΠΌΠ° (MM) β€” Π½Π΅ΠΈΠ·Π»Π΅Ρ‡ΠΈΠΌΠΎΠ΅ гСматологичСскоС Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ злокачСствСнных плазматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² костном ΠΌΠΎΠ·Π³Π΅ (КM). ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ MM опрСдСляСтся цитогСнСтичСскими абСррациями, ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π² ΠΊΠ»ΠΎΠ½Π΅ плазматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (ПК). ЦитогСнСтичСскиС исслСдования MM ослоТнСны Π³ΠΈΠΏΠΎΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ особСнностями ПК. Π’ связи с этим флуорСсцСнтная гибридизация in situ (FISH) Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с сортировкой ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌΠΈ полями (MACS) прСдставляСтся достойной Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΈ структурных ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ хромосом ΠΏΡ€ΠΈ MM. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Π΅ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ FISH с использованиСм Ρ‚Ρ€Π΅Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… спСцифичСских Π·ΠΎΠ½Π΄ΠΎΠ² для участков, содСрТащих 13q14.3 (D13S319), 14q32 (IGHC/IGHV) ΠΈ 1q12(CEP1), ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρƒ 48 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с MM. Π˜Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Π΅ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ FISH с использованиСм Π·ΠΎΠ½Π΄ΠΎΠ² LSI IGH/CCND1, LSI IGH/FGFR3 ΠΈ LSI IGH/MAF примСняли для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ t(11;14)(q13;q32), t(4;14)(p16;q32), ΠΈ t(14;16)(q32;q23) Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с пСрСстройкой 14q32. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: молСкулярныС цитогСнСтичСскиС Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΈ выявляли Ρƒ 40 (83,3%) ΠΈΠ· 48 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с MM. Π£ 13 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (27,1%) ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ 13q дСлСция/моносомия 13 [del(13q14)], аномальная пСрСстройка IGH ΠΈ аномалия хромосомы 1. Del(13q14) Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² 21 случаС (43,7%), Π° Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ пСрСстройки IGH β€” Π² 29 (60,4%), Π² Ρ‚ΠΎΠΌ числС Ρƒ 6 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с t(11;14) ΠΈ 5 с t(4;14). Ни Ρƒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· 9 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ пСрСстройками IGH ΠΈ Π±Π΅Π· t(11;14) ΠΈΠ»ΠΈ t(4;14) Π½Π΅ выявляли Ρ‚Ρ€Π°Π½ΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΡŽ t(14;16) (q32;q23). Π£ 24 ΠΈΠ· 48 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с MM (50%) опрСдСляли Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосомы 1. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΈΠ· 21 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с del(13q14) Π² 15 случаях имСлись пСрСстройки IgH Amp1q12;16. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΠΈΠ· 27 случаСв Π±Π΅Π· del(13q14) Ρƒ 8 ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π»ΠΈΡΡŒ Amp1q12; Π² 13 случаях ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ пСрСстройки IgH. ВыявлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ del(13q14) ΠΈ Amp1q12(Ο‡2 = 8,26, p < 0,01) ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ del(13q14) ΠΈ пСрСстройками IgH (Ο‡2 = 3,88, p < 0,05). Π’Ρ‹Π²ΠΎΠ΄Ρ‹: 13q Π΄Π΅Π»Π΅Ρ†ΠΈΡŽ/моносомию 13, пСрСстройку IGH ΠΈ аномалию хромосомы 1 часто ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΈ MM, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΈΡ… распрСдСлСниС Π½Π΅ случайно ΠΈ тСсно взаимосвязано. Π˜Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· FISH Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с MACS с использованиСм CD138-спСцифичных Π°Π½Ρ‚ΠΈΡ‚Π΅Π» являСтся Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ молСкулярных цитогСнСтичСских Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ ΠΏΡ€ΠΈ MM

    Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information

    Full text link
    By use of the two measures presented recently, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and the reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relations between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed

    Random and combinatorial mutagenesis for improved total production of secretory target protein in Escherichia coli

    Get PDF
    Signal peptides and secretory carrier proteins are commonly used to secrete heterologous recombinant protein in Gram-negative bacteria. The Escherichia coli osmotically-inducible protein Y (OsmY) is a carrier protein that secretes a target protein extracellularly, and we have previously applied it in the Bacterial Extracellular Protein Secretion System (BENNY) to accelerate directed evolution. In this study, we reported the first application of random and combinatorial mutagenesis on a carrier protein to enhance total secretory target protein production. After one round of random mutagenesis followed by combining the mutations found, OsmY(M3) (L6P, V43A, S154R, V191E) was identified as the best carrier protein. OsmY(M3) produced 3.1 ± 0.3 fold and 2.9 ± 0.8 fold more secretory Tfu0937 Ξ²-glucosidase than its wildtype counterpart in E. coli strains BL21(DE3) and C41(DE3), respectively. OsmY(M3) also produced more secretory Tfu0937 at different cultivation temperatures (37 Β°C, 30 Β°C and 25 Β°C) compared to the wildtype. Subcellular fractionation of the expressed protein confirmed the essential role of OsmY in protein secretion. Up to 80.8 ± 12.2% of total soluble protein was secreted after 15 h of cultivation. When fused to a red fluorescent protein or a lipase from Bacillus subtillis, OsmY(M3) also produced more secretory protein compared to the wildtype. In this study, OsmY(M3) variant improved the extracellular production of three proteins originating from diverse organisms and with diverse properties, clearly demonstrating its wide-ranging applications. The use of random and combinatorial mutagenesis on the carrier protein demonstrated in this work can also be further extended to evolve other signal peptides or carrier proteins for secretory protein production in E. coli

    A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23

    Full text link
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical current density (\bar{|J_{z}|}), mean absolute current helicity density (\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic energy density (\bar{\rho_{free}}), effective distance of the longitudinal magnetic field (d_{E}), and modified effective distance (d_{Em}) of each photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}}, and d_{Em} show higher correlation with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters \bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E} show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar Physic

    Measurements of the observed cross sections for e+eβˆ’β†’e^+e^-\to exclusive light hadrons containing Ο€0Ο€0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pbβˆ’1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+eβˆ’β†’Ο€+Ο€βˆ’Ο€0Ο€0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+Kβˆ’Ο€0Ο€0K^+K^-\pi^0\pi^0, 2(Ο€+Ο€βˆ’Ο€0)2(\pi^+\pi^-\pi^0), K+Kβˆ’Ο€+Ο€βˆ’Ο€0Ο€0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(Ο€+Ο€βˆ’)Ο€0Ο€03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8Γ—107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/Οˆβ†’Ξ³Ο•Ο•β†’Ξ³K+Kβˆ’KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0βˆ’+0^{-+} state (Ξ·(2225)\eta(2225)) with a mass of 2.24βˆ’0.02+0.03βˆ’0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19Β±0.03βˆ’0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/Οˆβ†’Ξ³Ξ·(2225))β‹…Br(Ξ·(2225)→ϕϕ)=(4.4Β±0.4Β±0.8)Γ—10βˆ’4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pbβˆ’1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0β†’ΞΌ+X)=(6.8Β±1.5Β±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+β†’ΞΌ+X)=(17.6Β±2.7Β±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+β†’ΞΌ+X)BF(D0β†’ΞΌ+X)=2.59Β±0.70Β±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25
    • …
    corecore